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Abstract. A so-called stochastic method is introduced which can be used to decompose 
the reducible representations of any finite group into irreducible representations. In this 
way, the regular representation of a finite group is reduced completely to obtain all of the 
irreducible representations of the group. It also induces a new approach to calculate the 
character table of a finite group. Based on this method, these calculations or decompositions 
can be performed by means of a computer. 

1. Introduction 

As is well known, there are two fundamental problems in the theory of representation 
of finite groups. Firstly, finding all irreducible finite-dimensional representations of a 
given finite group; and secondly, decomposing a given finite-dimensional representation 
of a finite group into its irreducible components. It is evident that the first problem 
is more important than the second one because we can decompose the reducible 
representations of a finite group completely if the irreducible representations of the 
group are known (Elliott and Dawber 1979). However, the first problem has not been 
completely solved yet, although some developments have been made (Cannon 1969, 
Flodmark and Blokker 1967, 1972, Flodmark and Jansson 1982, Bradly and Cracknell 
1972, Chen 1981, 1982, 1984, Davies 1982, Neubuser 1982, Folland 1977, 1979, Chen 
et a1 1985). 

In terms of the theory of representation of finite groups, given the generators and 
the relations between the generators or the group table of a finite group, of which the 
order g is known, we can easily get the conjugate classes Ci( i = 1,2, . . . , r ) ,  the number 
r of classes and the regular representation rTg(VA E G). The regular representation 
rreg is a unitary reducible representation and contains all irreducible representations 
of the given group. For our purposes, we only discuss how to decompose the regular 
representation of a non-Abelian group into the irreducible representations as follows. 
However, the method given in the present paper can also be used to decompose the 
other reducible representations. 

Let r be the number of classes of a given group G. There certainly exist r 
non-equivalent irreducible representations r ( a ) ( a  = 1 , 2 , .  . . , r )  and each of them 
appears d, times in the regular representation, where d, is the dimension of the 
irreducible representations r(a) .  Therefore, the regular representation of the group G 
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may be written in the following form: 
rz) \ 

\ 

where U is a unitary matrix. 
If the matrix U can be found, the regular representation of the group G can be 

decomposed and all the irreducible representations of the group G can be extracted 
from the decomposition of a regular representation of G .  Unfortunately, we know 
little about the matrix U except that it is unitary and transforms the regular representa- 
tion rreg into the form ( l . l ) ,  so it is difficult to find U. The main aim of the present 
paper is to introduce the general method used to decompose the regular representation 
and to find the matrix U in equation ( l . l ) ,  i.e. we find a method to answer the first 
problem mentioned above. 

There exists a theorem in the theory of linear algebra as follows (Zhang 1980). 

Theorem 1. If matrices A and B commute with each other, i.e. 

A B =  BA 

and the matrix A also has the form 

where A i  # Ai while i # j ,  then B has the form 

where Bi is a di-dimensional matrix with its unit matrix Ii ( i  = 1 , 2 , .  . . , r ) .  On the 
other hand, if A can be transformed into the form (1.2) by a unitary matrix, B can 
also be kept in the form (1.3) by the same unitary matrix. 

From theorem 1,  we obtain a very important conclusion as follows. 
If there is a Hermitian matrix X which commutes with all the matrices rh of a 

unitary reducible representation ri  of a group G, i.e. 

rkx = xri (VA E G )  (1.4) 

and if the eigenvalues of the matrix X are not equal to the same number, then a unitary 
matrix making X diagonal can reduce I" to the direct sum of the representations of 
G with dimension less than the dimension of r'. 
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Using this conclusion, we can proceed in the following way. 
(i)  Find the matrix X in rreg, which satisfies the conditions 

x+=x ryx = xry (VA E G )  (1 .5 )  
and then calculate the unitary matrix V making X diagonal, by which we reduce rreg 
into r reducible representations (r),, i.e. 

\ 
) ( V A E G ) .  

Here (r), is equivalent to the direct sum of the irreducible representations I",), with 
the number of irreducible r',) contained in (r), being d, in terms of group theory, i.e. 

( r A ) n  = wa i';' r!;. '1 w?, V A E G  (1 .7)  

r?) 
where WL = W;'. 

(i i)  Find matrices 2, in ( r ) , ( a  = 1 ,2 , .  . . , r )  which satisfy the conditions 

z', = z, ( r A ) n z u  = z n  ( r A  )a (VA E G )  (1.8) 
respectively. We require Z,  to have at least two non-equal eigenvalues, so that the 
matrix diagonalising 2, may reduce the reducible representations (r), further until 
the reducible representations are completely reduced. 

The fundamental problem now becomes how to find X and Z,(a = 1,2, . . . , r ) .  

2. The initial decomposition of the regular representation 

In this section, we discuss how to find a Hermitian matrix X in equation (1 .5)  for rreg. 
Let SYg  be the sum of the matrices of the elements in the class Ci( i = 1,2, . . . , r )  which 
belongs to the regular representation Feg, i.e. 

s y =  r y  
AE C, 

and also 
sfY= r;!, 

A E C ,  

where A-' stands for the inverse element of A(VA E G). In terms of the properties of 
the conjugate class C, and the regular representation rreg (Lomont 1959), the relations 
are 

(2 . la)  

(2.lb) 
Construct X in the form 

r x = p,syg 
i = l  



2938 W Lee and K Chen 

where pi are stochastic complex numbers. It is easy to confirm that X commutes with 
Tzg(VA E G) due to the property (2.1~1).  In order to make X Hermitian, we require that 

pi-l = p ?  i = 1,2,  . . . , r (2.3) 

(if Ci-l = Ci, pi is real). Therefore, X with constraint (2.3) must satisfy conditions (1 .5 ) .  
We need to prove that the number of distinct eigenvalues of X are at most r and 

the multiplicities of the distinct eigenvalues are d:, d: ,  . . . , d : ,  respectively, as long as 
X really has r distinct eigenvalues. 

From a theorem in group theory (Miller 1972, Naimark 1980), the decomposition 
of the regular representation can always be written as in equation ( l . l ) ,  without knowing 
the form of U, so we have 

As 

according to Schur's lemma, which states that a matrix commuting with all the matrices 
of an irreducible representation must be a numerical matrix, we have 

(2.6) 

(2.5) 

where ai"' is an undetermined constant and I ,  is a d,-dimensional unit matrix. Taking 
the trace on both sides of equation (2.6), we obtain 

where gi is the number of elements in Ci and x!"' is a character of a class Ci for the 
irreducible representation r',). Substituting (2.5) and (2.6) into equation (2.4), we have 

where 

From equation (2.8), it is easy to see that the greatest number of distinct eigenvalues 
of X is r and their multiplicities are d:, d : ,  . . . , d f ,  respectively. 
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However, we do not expect that X has the r eigenvalues when the values of the 
stochastic numbers p i (  i = 1,2, . . . , r ) ,  with constraint (2.3), are chosen at random. 
We should discuss the probability of X having just r distinct eigenvalues. For 
any two non-equivalent irreducible representations I“,) and r(’), the characters 

( x \ ” ’ / d , , x ~ ) / d , ,  . . . , x ? ’ / d , )  is not equal to ( x ~ p ’ / d p , x ~ p ) / d P , .  . . , x I p ) / d p )  at all. 
If the stochastic p l ,  p z ,  . . . , p,  satisfy one or more of the following conditions: 

( x ! ~ ) , ~ ~ ) ,  . . . , x?’) are not proportional to the characters (xi”’, x i p ’ ,  . . . , x r  (PI  1, so 

then the number of distinct eigenvalues of X will be less than r. Since ( p 1  , p z ,  . . . , p , )  
can take any set of values in the R’ real space and each condition of equation (2.10) 
represents a hyperplane of ( r  - 1) dimensions in R‘, X has r distinct eigenvalues if 
the values of ( p l ,  p r ,  . . . , p , )  are not taken on one or more of the $r ( r  - 1) hyperplanes. 
Therefore, the probability is high when X has r distinct eigenvalues. 

Taking the values of the complex stochastic numbers p 1  , p 2 ,  . . . , p r  with constraint 
(2.3) freely, we form a Hermitian matrix X and calculate the eigenvalues of X .  It will 
have r distinct eigenvalues as usual, or if not, we change the stochastic numbers. If 
X has r distinct eigenvalues, the multiplicities of them are d i ,  d: ,  . . . , d s, respectively, 
as pointed out before, so that we obtain the dimension of the irreducible representations 
of G. The eigenvectors of X form a unitary matrix V, which will diagonalise the matrix 
X and will also decompose the regular representation of G. 

The eigenvalues of X usually degenerate corresponding to irreducible representa- 
tions whose dimension is greater than one. As a result of this, V cannot decompose 
the regular representation completely, but it can decompose the regular representation 
partially as in equation (1.6). Thus we have to decompose the reducible representations 
(r), further in the next step. 

As mentioned previously, the complex stochastic numbers p l ,  p 2 ,  . . . , p ,  satisfy the 
constraint (2.3). In order to avoid the necessity of determining whether a class contains 
the inverse elements of another class and to simplify the form of X ,  we may write X 
in the following form. Let 

p, = a: + ip: (where i =a) 
a; = a; + P: = PJ - PI-1 ’ 

aJ, P I ,  a] - ’ ,  @,-I are real stochastic numbers and we obtain 

(2.11) 

3. The final decomposition of the regular representation 

In order to decompose the reducible representations (I?), further, we need to find a 
Hermitian matrix Z, commuting with (T,),(VA E G) and having at least two distinct 
eigenvalues. Let Y be an arbitrary Hermitian matrix, and set up 
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It is easy to confirm that 

For convenience of calculation and discussion, it is supposed that 

Yo 0 . . .  0 

(3.3) 
y=[*;. '0' 0 ::: .;I. 

. . .  

Yo is a d,-dimensional Hermitian matrix and is restricted with Tr Yo# 0, and the 
elements of Yo consist of the complex stochastic numbers 

( Y 0 ) m k  = W m k + i Y m k  

( YO)km = ( YO)*mk = Wmk -iymk 
(m, k =  1 , 2 , .  . . , d,) (3 .4)  

where Wmk, Ymk are real stochastic numbers. First, we will find the conditions for the 
eigenvalues of 2, being equal when we discuss the probability that 2, has at least 
two distinct eigenvalues. 

Assume 

Q+&Q = buId: where Qt = Q-' ( 3 5 2 )  

i.e. 

2, = bald: (3.56) 

where b, is an undetermined constant and Id:  is a dt-dimensional unit matrix. From 
equations (3.1)-(3.3), we obtain 

1 g 
d2, d, 

b, =-TrZ, =,Tr Yo#O. (3.6) 

As is well known, a unitary matrix W, exists that decomposes (r), into the direct 
sum of the irreducible representations r',), i.e. 

We write W, and W', in the form 

/ W I I  w12 

where Wij( i , j  = 1,2 ,  . . . , d,) are d,-dimensional submatrices. 
Substituting equations (3.5)-(3.8) into equation (3.1), we have 
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* I  I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I 1 rk"JlwW:d,YOwllr(AOI) r(A'lw:d,Yow12rk") . . .  rk"-WWLd,YOWld,r~) 

= b, Idb. (3.9) 

\ A€G AEG AEG 

Since there exists the relation between an irreducible representation and a matrix M 
(Hamermesh 1962) 

then these conditions are obtained from equation (3.6) and equation (3.9): 

or 

(3.10b) 

while the eigenvalues of Z, have the same value. In fact, the matrices WliW:i- 
(l/da)Ide and W,iW;j(i # j, i , j  = 1,2, .  . . , d,) cannot all be zero. The reason is that if 

w1 I w:, - ( 1/ dm )Id, = 0 i = 1 , 2  , . . . ,  d, 

then 

det ( W, , W , = I det W, , I = de t ( ( 1 / d, ) Id, ) # 0 

i.e. 

det W,, # 0 det W:, # 0 i = l , 2  , . . . ,  d, .  

Thus 

det( W,, W;,) = (det W,,)(det W;,) # 0 

As a result, W,, W:,( i # j, i, j = 1,2 , .  . . , d , )  cannot all be zero simultaneously. On the 
other hand, if 

i # j  i , j = l , 2  , . . . ,  d,. 

w, , w:, = 0 i # j  i , j = 1 , 2  , . . . ,  d, 

then 

det W,,=O or det W:,=O i # j .  

It is impossible to make 

wl I w:z - ( 1/ do )Id, = 0. 
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So the rank k of the coefficient matrix of the elements of Yo in equation (3.10b) is 
greater than or equal to one, and the solutions of the elements of Yo are the hyperplanes 
of ( d t  - k) dimension in the Rdt real space. Z, may become a numerical matrix b& 
if the elements of Yo are taken on the hyperplanes. 

From the above discussion, we know that Z, has two or more distinct eigenvalues 
except when the elements of Yo are taken on the finite number of hyperplanes (one 
is due to Tr Yo = 0, the others as mentioned above). Hence, when the elements of Yo 
are taken at random, the probability that Z, has two or more distinct eigenvalues is high. 

A unitary matrix can be obtained from the eigenvectors of Z, when Z, has two or 
more distinct eigenvalues. By means of the unitary matrix, we can decompose 
(T,),(VA E G) into representations whose dimensions are nd, where n is an integer 
and 1 s n < d,. If the least dimension of the representations is d,, the representation 
with the least dimension is certainly an irreducible representation of G. Otherwise, 
we again have to construct a Hermitian matrix 2; of nd, dimensions, as above, to 
calculate continuously until we get the de-dimensional irreducible representation. 

So far we have seen that the stochastic numbers play a very important role in our 
method, affecting the matrices X and Z,. In some cases, the number of the eigenvalues 
of X or 2, is less than we require, if we take a set of stochastic numbers for X or 
Z,. But fortunately the probability of this always happening is so small that we need 
not worry about such cases. So, if encountering this case, it is enough to take another 
set of stochastic numbers to construct the matrices X and Z,. By means of a computer 
it is convenient to take a set of stochastic numbers and to calculate the eigenvalues 
and eigenvectors of X and Z,. 

Moreover, it should be pointed out that this stochastic method is different from 
those of Flodmark-Blokker and Chen. Flodmark-Blokker’s scheme (1972) is rather 
complicated for constructing the basis of the irreducible representation r(a) in terms 
of the diagonal form of some group elements A(VAE G). Chen (1981) has proposed 
another scheme for selecting a complete set of commuting operators of a group G, 
but it requires a reconstruction of the subgroup chain of the group G which is more 
difficult to perform. Comparatively, the stochastic method provides a very useful and 
efficient method of explicitly carrying out decompositions. Using this method, we have 
calculated the irreducible representations of all non-Abelian groups of order 81 (Senior 
and Lunn 1934) which were unknown before. The method, of course, can also be 
applied to other aspects, for example, to the determination of the character table of 
finite groups. 

4. The method generalised to the calculation of the character table of a finite group? 

The stochastic method had been adopted by McKay for many years (see Neubuser 
1970) although he only used it to calculate the character table. Here we give more 
detail and a more complete description. As an application, it will be found that the 
stochastic method is also effective in calculating the character table. 

Among the conjugate classes Ci(i = 1 ,2 , .  . . , r ) ,  the relations 
r 

cicj= h i j k c k  i , j = 1 , 2  ,..., r 
k = l  

(4.1) 

t See Chen and Lee (1985) 
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exist, where hllk is an integer or zero. We obtain 
r 

gZgJx!"'x:u' =L hZ]kgkxp' a = 1,2,  . . . , r i , j = 1 , 2  , . . . ,  r (4.2) 
k = l  

from the relation above. The symbols used in equations (4.2) have been defined in 
the previous sections of this paper. If h e k  is regarded as the element (H,)]k of a matrix 
HI, equations (4.2) can be rewritten as 

a, i = l , 2 , .  . . ,  r (4.3) ,i"','.) = H , p i  

where U!.' = gXiU'/d, is the component of the eigenvectors u ( ~ )  of H,. 
For convenience of discussion, we set 

and also 

Equations (4.3) are transformed into 

( L ,  - IJ)q = 0 i = 1,2,  . . . , r (4.4) 

where I is an r-dimensional unit matrix and I ,  is a constant. 
According to the properties of hllkr we have: 
(i) corresponding to a class C,-l, which contains the inverse elements of a class C,, 

L,-I = LT (4.5) 

Lp= L:. (4.6) 

L,LJ = L]L, i , j = l , 2  , . . . ,  r. (4.7) 

where Lp is the transposed matrix of L,.  Because the elements of LT are real, then 

(ii) L, and LJ commute with each other, i.e. 

We can calculate the eigenvalues of all of equation (4.4) which relate to the 
characters x!"'( i = 1,2, . . . , r) ,  but we do not know how to arrange the character table 
corresponding to the irreducible representations from the eigenvalues. The eigenvectors 
q'* ' (a = 1 , 2 , .  . . , r )  of one of equation (4.4) concerned with the characters x!"' must 
be undetermined, since some of the characters for a class are usually equal, which 
make the eigenvalues degenerate. However, the eigenvectors have the very important 
property that they are common to all the matrices L,( i = 1,2, . . . , r).  Another property 
they have is that they are orthonormal by pairs due to 

(4.8) 

which can be found in any book on the theory of representation of the group. Hence 
the character table is only given according to a unique orthonormal set of common 
eigenvectors (to within constant factors which are determined below) of Li( i = 
1 , 2 , .  . . , r).  The key to the problem is how to calculate such eigenvectors. 

Similar to theorem 1,  another theorem exists. 
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Theorem 2 .  If two matrices A and B commute, and if an eigenvalue of A is non- 
degenerate, the eigenvector associated with it is also an eigenvector of B. 

From theorem 2, it is necessary to get a matrix L which commutes with all the 
matrices Li(  i = 1,2,  , . , , r ) .  If all the eigenvalues of L are non-degenerate, the eigen- 
vectors associated with them must be common eigenvectors of all the matrices 
Li( i = 1,2,  . . . , r ) .  Using the same idea as presented previously, we set 

I 

L =  AiLi 
i = l  

(4.9) 

where A i ( i  = 1,2, . . . , r )  are a set of stochastic numbers. Similarly, the constraint on 
the stochastic numbers is 

A , - I  = A T .  (4.10) 

One can prove that 
L+= L LiL = LL, ( i =  1 , 2 , . .  . , r ) .  (4.11) 

Therefore, equations (4.3) are replaced by the following equation: 
( L - I I ) ( o = O  (4.12) 

where 1 = Xr=l  AJi. We determine a unique orthonormal set of common eigenvectors 
from equation (4.12); if selected correctly the stochastic numbers A I ,  A*,  . . . , A, make 
the eigenvalues of L non-degenerate, for the characters in a class corresponding to 
the non-equivalent irreducible representations are not exactly equal. Hence the eigen- 
vectors associated with them correspond to 

(o("' = ((oj"', ( o p ,  . . , , (ol")) 

(4.13) 

where a = 1,2,  . . . , r for the irreducible representation and K'"' is an undetermined 
constant. 

Consider how to determine the constant factor K'"' .  Since C ,  contains only one 
element, the unit element of the group, i.e. g, = 1 and xi"' = d,, we obtain 

a = 1,2 , .  . . , r 

normalising p'") to (oj"'= 1 .  We know the property of characters 

gi/x:"'12 = g. 
i = l  

g is the order of G. So 

(4.14) 

(4.15) 

a = 1 , 2  , . . . ,  r. (4.16) d u = (  g , ) 1 ' 2  

x;=, IqpI"' * 
The dimensions of the irreducible representations are obtained from equations (4.16). 
Finally, the characters 

(4.17) 

are obtained from the eigenvectors and formed into the character table. 
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As before, we should discuss the probability that the eigenvalues of L are non- 
degenerate. Using the same idea as in § 2, suppose that if the eigenvalues are degenerate, 
one or more equations 

= p' a # P  a , p = 1 , 2  , . . . ,  r (4.18a) 
or 

exist, similar to equation (2.8). We can also prove that the stochastic numbers 
h i ,  h 2 , .  . . , A r  can be easily chosen to make the eigenvalues of L non-degenerate. 

We have proposed a method to determine the character table even though there 
are some other methods to do so (Chen er a1 1985, Dixon 1967, Cannon 1969). 
Comparatively, the advantage of the stochastic method lies in the fact that it only 
requires equation (4.12) to be treated and is convenient to calculate with a computer. 
Of course, the method used to decompose the regular representation into the representa- 
tions (r), in § 2 can also be used to determine the character table, but it is more 
complicated. Applying the method to physics, it can also be used to construct a basis 
of eigenvectors common to a complete set of commuting observables which play an 
important role in quantum mechanics. 

5. Concluding remarks 

The following correspondences are established for the decomposition of the reducible 
representations or the determination of the character table of a finite group. 

(i)  Look for the matrices that commute with element matrices or class matrices of 
a finite group with conditions ( l S ) ,  (1.8) or (4.11). 

(i i)  Calculate the eigenvalues of these matrices. When the numbers of the distinct 
eigenvalues are a maximum, the eigenvectors associated with them are composed of 
unitary matrices which decompose the reducible representations or determine the 
character table. 

The matrices to be found consist of the stochastic numbers which affect the numbers 
of the eigenvalues. It has been proved that the probability is high when the numbers 
of the eigenvalues are a maximum and the stochastic numbers are selected. 
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